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INTRODUCTION
Humans and many animal models used in neuroscience are social
species. For these species, social experience across the lifespan
has lasting impacts on the brain and behavior. However,
behavioral neuroscientists not studying social behavior rarely
consider their subjects’ social history. Factors such as social rank,
history of isolation, and early care environment can have profound
implications for neural and behavioral data interpretation. We
argue this social history-informed approach may be critical for
reconciling disparate findings across behavioral neuroscience
research.

SOCIAL RANK
Group-living species, including humans, readily establish and
maintain social dominance hierarchies. These social hierarchies are
adaptive for community survival, allowing for resource allocation,
supporting offspring survival, and reducing energy expenditure.
Hierarchies are formed naturally in the wild for many species and
can be modeled in the lab [1]. Studies across species have shown
that at the individual level, social rank is a major determinant of
long-term outcomes on nearly every level of neurobehavioral
analysis, including hormones, brain structure, and social decision-
making [1, 2]. As such, these baseline social rankings are a key
consideration in interpreting experimental results.
In rodents, changes in social hierarchy formation induce

changes in plasma hormones [2]. Once stable hierarchies are
formed, their maintenance requires individuals use optimal
behavioral strategies for their position. For example, in rodents,
it is adaptive for subordinate animals to avoid the dominant and
wait for access to food and receptive mates, otherwise risking
injurious fighting. This may result in differences across several
neural and behavioral outputs, including risk aversion and social
approach [3–5]. Recent research has highlighted how social rank
information is encoded in the medial prefrontal cortex and its
subregion, the anterior cingulate cortex [6]. Following repeated
winning during agonistic encounters, dominant mice show
increased synaptic strength and neuronal activity in these
regions [7]. On the other hand, subordinate rank can increase
anxiety-like behaviors and influence vulnerability to chronic
stress-associated metabolic changes and diseases [3, 8]. A recent
study in mice shows that social dominance explains a large
portion of non-social behavioral differences and genetic
expression differences [9].
Given the importance of rank on behavior, plasticity and stress

reactivity, researchers not expressly studying hierarchies should

consider rank information when interpreting neurobehavioral
results. Filming home-cage interactions can help provide rank
information via observations of agonistic interactions like fights
and chases [10]. Territorial urine marking tests and the tube test
are two easy assays to address social ranks in rodents [11, 12]. In
addition, physiological indices of rank, including circulating
testosterone and the size of adrenal glands [2, 13], may be useful
in interpreting variable experimental outcomes.

SOCIAL ISOLATION
Across social ranks, access to partners for interaction is crucial.
Social isolation (SI) is inherently aversive for social species,
triggering motivated behaviors to engage in social contact [14].
While a rich literature details the effects of SI through studies
specifically manipulating this variable, SI can occur outside of
these experiments. Indeed, most systems neuroscience studies
include a built-in period of social isolation when animals are in
recovery from an invasive surgical procedure.
These experiences are critical to consider when interpreting

neurobehavioral data, as they have myriad impacts on brain
function [6, 14]. In humans and rodents, acute social isolation is
associated with changes in dopamine signaling in the substantia
nigra pars compacta, ventral tegmentum, and dorsal raphe
nucleus [15, 16]. Furthermore, chronic isolation causes heightened
emotional reactivity to stress, dysregulation of the hypothalamic-
pituitary-adrenal (HPA) axis, aggression, and persistent defensive
responses [17–20]. Given these impacts, we urge researchers to
include details about any isolation periods experienced by test
subjects in their experimental methods.

EARLY CARE QUALITY
One of the most robust predictors of lifelong psychiatric outcomes
is the quality of early caregiving [21]. Research across species has
detailed how specific aspects of the early care environment
produce immediate and lasting impacts on nearly every level of
brain function [22, 23]. For instance, typical caregiving buffers the
infants’ HPA axis—a key regulatory system for healthy develop-
ment of the stress response. Conversely, these protective effects
are weakened or absent with stressed and/or maltreating
caregivers, resulting in dysfunction of emotional regulation
circuits. Even nurturing behaviors fail to produce expected brain
impacts when caregivers are stressed, or when the quality of
caregiver-infant attachment is poor [24]. Researchers studying
these processes use numerous experimental paradigms to model
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early life stress, including limiting the mother’s nest resources and
separating infants from the mothers [23].
However, numerous additional factors can increase the stress of

the caregiver, and thereby impact the neurobehavioral develop-
ment of the infant. For researchers breeding rodents in-house,
these variables can include litter size, litter composition (male/
female), and factors such as handling and the sex of experi-
menters/husbandry staff. On the other hand, shipping female rats
during pregnancy or immediately post-partum is massively
stressful and can induce atypical treatment of pups [25]. As any
of these variables can alter maternal behavior towards the entire
litter, it is critical to account for litter effects when assigning
animals to experimental conditions.
While it is beyond the capabilities of basic researchers to

consider every possible environmental feature of early life (e.g.,
maternal diet, housing type, ventilation), evaluating the stress of
the mother can capture these collective impacts. A non-disruptive,
relatively straightforward approach for researchers with access to
pregnant or post-partum dams is to monitor their behavior and
identify signs of distress, including trampling of pups and failure
to retrieve scattered pups. As these behaviors have been robustly
linked with neurobehavioral outcomes [22–24], they merit
reporting in all neurobehavioral rodent studies, not just those
focused on development.

CONCLUSION
The impact of previous social experience is known to be of
paramount importance for cognition, development, and moti-
vated behavior. These myriad factors can include social stability,
paternal care, prior mating/sexual experience, conditioned social
defeat, cage overcrowding, and many others. Here, we have
turned our focus to three very specific social history factors: rank,
isolation, and early caregiving quality. Although these variables
are the subjects of intense study in experiments designed to
manipulate them, they can introduce variability into any experi-
ment using social species for animal models. We thus urge all
researchers using social species to consider and report on these
social factors.
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